Adrian R. Krainer - Member

Adrian R. Krainer

Director

Personal Experience

Personal Experience

Adrian Krainer’s lab studies the mechanisms of RNA splicing, ways in which they go awry in cancer and genetic diseases, and the means by which faulty splicing can be corrected. For example, they study splicing in spinal muscular atrophy (SMA), a neuromuscular disease that is the leading genetic cause of death in infants.

In SMA, a gene called SMN2 is spliced incorrectly, making it only partially functional. The Krainer lab found a way to correct this defect using a powerful therapeutic approach. It is possible to stimulate SMN protein production by altering mRNA splicing through the introduction into cells of chemically modified pieces of RNA called antisense oligonucleotides (ASOs). Following extensive work with ASOs in mouse models of SMA, one such molecule, known as nusinersen or Spinraza, was taken to the clinic, and at the end of 2016 it became the first FDA-approved drug to treat SMA, by injection into the fluid surrounding the spinal cord.

The Krainer lab is currently using antisense technology to develop therapies for other diseases caused by splicing defects, including familial dysautonomia, and to target a cancer-specific alternative-splicing event that controls the Warburg effect. In addition, they are applying antisense technology to stabilize mRNAs that are destroyed by a process called nonsense-mediated mRNA decay (NMD), both to learn about the underlying mechanisms and to develop new therapies, e.g., for a nonsense allele in cystic fibrosis.

The Krainer lab has also worked to shed light on how splicing factors and alternative splicing promote cancer progression in the context of breast, liver, brain, pancreatic, and blood malignancies. Finally, the lab continues to study fundamental mechanisms of splicing and its regulation, focusing on the precise recognition of highly diverse intronic and exonic pre-mRNA features by various spliceosome components.